Mathematical structures in logic Exercise class 3

Filters, congruences, atoms

February 18, 2016

- (1) Suppose \sim is a congruence of a bounded distributive lattice L. Show that $\{a \in L \mid a \sim 1\} \subseteq L$ is a filter on L.
- (2) (Prime filters and maximal filters.) Let B be a Boolean algebra. Show that:
 - (a) If F is a filter on B, then $I := \{\neg a \in B \mid a \in F\}$ is an ideal on B.
 - (b) If F is a filter, then $B \setminus F$ may not be an ideal on B.
 - (c) If F is a prime filter, then $B \setminus F$ is a prime ideal.
 - (d) Which of these statements are true for Heyting algebras?
- (3) (Atoms and co-atoms)
 - (a) Describe atoms and co-atoms on a Boolean algebra of the form $\wp(X)$.
 - (b) Show that in every Boolean algebra, if a is an atom, then $\neg a$ is a co-atom.
 - (c) Find a Heyting algebra A with an atom a such that $\neg a$ is not a co-atom
- (4) Let *B* be a Boolean algebra. Show that maximal filters on *B* are in one-to-one correspondence with surjective homomorphisms $f: B \to \mathbf{2}$, where **2** denotes the two element Boolean algebra.

Additional exercises

- (5) Show that there is a one-to-one correspondence between filters and ideals on a Boolean algebra. Can you find a similar correspondence in the case of Heyting algebras?
- (6) Describe all Heyting algebras where $\{1\}$ is a prime filter.
- (7) Let $\mathfrak{X} = (X, \tau)$ be a topological space. Recall that a subset $X' \subseteq X$ is *dense* iff $U \cap X' \neq \emptyset$, for every non-empty open set $U \in \tau$. Show that the dual space of every countable Boolean algebra has a countable dense subset.